Dr. Frank Meye

Dr. Frank Meye
PI
Throughout my career, I have been fascinated by how brains encode motivational drives, and how this process can go awry. The research of my lab focuses on the neurobiology underlying the interplay between stressed states (due to environmental stressors) and motivated (reward seeking) behavior. Our scientific approach is to use high-resolution neurophysiological measurement techniques to determine, in preclinical models, how stressors change the strength of specific synapses and circuits in the brain (particularly focusing on those linked to processes of motivation, reward, emotional states, and behavioral control). Furthermore we use brain stimulation techniques to gauge the causal contributions of such stress-driven brain changes for motivated (feeding) behavior. Thus by mapping, monitoring, and then mimicking/preventing/reverting specific effects of stress in these brain systems, we seek to ultimately understand the complex relationship between stress and motivated behavior.
reward systems, behavioral testing, electrophysiology, optogenetics, chemogenetics, fiber photometry

Karlijn Kooij

Karlijn Kooij
Postdoc
I research how dopamine-sensitive neurons in the prefrontal cortex are involved in impulsive behavior and palatable food intake. Additionally, I study whether these neurons are affected by a stressful event.
Operant conditioning, fiber photometry, chemogenetics, pharmacology

I.G. Wolterink-Donselaar

I.G. Wolterink-Donselaar
Research-technician
Practical assistance of PhD-students and Postdocs in their scientific careers.

Simone Duis

Simone Duis
Research technician
Practical assistance of PhDs and postdocs

Louisa Linders

Louisa Linders
PhD candidate
My research focuses on unraveling Ventral Tegmental Area dopamine circuits involved in stress eating.
Ex vivo electrophysiology; patch clamp, (in vivo) optogenetics, local drug infusion.

Ioannis Koutlas

Ioannis Koutlas
PhD candidate
My research aims at understanding how neuronal ensembles in the ventral tegmental area integrate information arising from aversive and rewarding experiences.
Behavior, chemo- and optogenetics, fiber photometry

Laura Supiot

Laura Supiot
PhD candidate
My research aims to define how the cortical control over feeding centers is altered by stress.
In vitro electrophysiology, optogenetics.

Wenjie Du

Wenjie Du
PhD candidate
Unravelling the role of opioid modulation of striatohypothalamic pathways in the context of stress eating
Electrophysiology, fiber photometry, optogenetics, chemogenetics

Roberto D’Angelo

Roberto D’Angelo
PhD candidate
Studying cell function cell by cell.
Electrophysiology, optogenetics

Emel Souiki

Emel Souiki
PhD candidate veterinary medicine (supervised by Dr. Meye)
I'm interested in the impact of early-life opportunities such as play on rats' cognitive control and stress resilience, focusing on risk-taking during play. Specifically, I explore how the medial prefrontal cortex and its projections to the nucleus accumbens shape decision making in conflict situations and resilience against the unexpected. This project is a collaboration with Dr. Heidi Lesscher.
Behavioral paradigms, fiber photometry, ML models for automatisation of tracking and annotation, Python, MATLAB

Recent Papers

Meye lab

  1. Linders, L. E., Patrikiou, L., Soiza-Reilly, M., Schut, E. H. S., Van Schaffelaar, B. F., Böger, L., Wolterink-Donselaar, I. G., Luijendijk, M. C. M., Adan, R. A. H. & Meye, F. J.* (2022). Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food. Nature Communications, 13(1):6898. doi: 10.1038/s41467-022-34625-7. PMID: 36371405
  2. Linders, L. E#., Supiot, L. F#., Du, W., D'Angelo, R., Adan, R. A. H., Riga, D.*, & Meye, F. J.* (2022). Studying synaptic connectivity and strength with optogenetics and patch-clamp electrophysiology. International Journal of Molecular Sciences, 23(19):11612. doi: 10.3390/ijms231911612. PMID: 36371405 # = equal contribution; * = corresponding authors
  3. Koutlas, I., Linders, L. E., Van der Starre, S. E., Wolterink-Donselaar, I. G., Adan, R. A. H., & Meye, F. J. (2022). Characterizing and TRAPing a Social Stress-activated Neuronal Ensemble in the Ventral Tegmental Area. Frontiers in Behavioral Neuroscience, 10.3389/fnbeh.2022.936087. eCollection 2022. PMID: 35874648
  4. Montalban E, Giralt A, Taing L, Schut EHS, Supiot LF, Castell L, Nakamura Y, de Pins B, Pelosi A, Goutebroze L, Tuduri P, Wang W, Neiburga KD, Vestito L, Castel J, Luquet S, Nairn AC, Hervé D, Heintz N, Martin C, Greengard P, Valjent E, Meye FJ, Gambardella N, Roussarie JP, Girault JA. Translational profiling of mouse dopaminoceptive neurons reveals region-specific gene expression, exon usage, and striatal prostaglandin E2 modulatory effects. Mol Psychiatry. 2022 Apr;27(4):2068-2079. doi: 10.1038/s41380-022-01439-4. Epub 2022 Feb 18. PMID: 35177825
  5. Omrani A, de Vrind VAJ, Lodder B, Stoltenborg I, Kooij K, Wolterink-Donselaar IG, Luijendijk-Berg MCM, Garner KM, Van't Sant LJ, Rozeboom A, Dickson SL, Meye FJ, Adan RAH. Identification of Novel Neurocircuitry Through Which Leptin Targets Multiple Inputs to the Dopamine System to Reduce Food Reward Seeking. Biol Psychiatry. 2021 Dec 15;90(12):843-852. doi: 10.1016/j.biopsych.2021.02.017. Epub 2021 Feb 23. PMID: 33867112
  6. Willems J, de Jong APH, Scheefhals N, Mertens E, Catsburg LAE, Poorthuis RB, de Winter F, Verhaagen J, Meye FJ, MacGillavry HD. ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons. PLoS Biol. 2020 Apr 10;18(4):e3000665. doi: 10.1371/journal.pbio.3000665. PMID: 32275651
  7. Soiza-Reilly M, Meye FJ, Olusakin J, Telley L, Petit E, Chen X, Mameli M, Jabaudon D, Sze JY, Gaspar P. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry. 2019 May;24(5):726-745. doi: 10.1038/s41380-018-0260-9. Epub 2018 Oct 2. Erratum in: Mol Psychiatry. 2019 Jan 10. PMID: 30279456
  8. Tan D, Nuno-Perez A, Mameli M, Meye FJ. Cocaine withdrawal reduces GABAB R transmission at entopeduncular nucleus - lateral habenula synapses. Eur J Neurosci. 2019 Aug;50(3):2124-2133. doi: 10.1111/ejn.14120. Epub 2018 Sep 6. PMID: 30118546
  9. Meye FJ, Soiza-Reilly M, Smit T, Diana MA, Schwarz MK, Mameli M. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse. Nat Neurosci. 2016 Aug;19(8):1019-24. doi: 10.1038/nn.4334. Epub 2016 Jun 27. PMID: 27348214
  10. Meye FJ, Valentinova K, Lecca S, Marion-Poll L, Maroteaux MJ, Musardo S, Moutkine I, Gardoni F, Huganir RL, Georges F, Mameli M. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat Neurosci. 2015 Mar;18(3):376-8. doi: 10.1038/nn.3923. Epub 2015 Feb 2. PMID: 25643299
WP Twitter Auto Publish Powered By : XYZScripts.com